What will you learn?
The major objective of this course is to enhance student overall understanding of human interactions with the environment in the development of modern municipal water systems.

Upon completion of the course students should be able to articulate the contributions the Romans have made to water resources management and water system technology. They should have a better understanding of the factors that enter into designing a sustainable water system.

Field exercises are designed to reinforce skills and concepts in our water resources programs. Skills include practical applications of GPS, GIS map making for defining watershed boundaries and delineating hydrologic properties of importance, and the use of spreadsheets for data management and computation. Concepts to be reinforced include the relation of geology and climate to groundwater quality and resource availability, factors needing to be defined in successful water resource management, major hydraulic principles, and water budget computations for evaluating water needs and sustainability.

Instructors:

Dr. Gary Robbins, Professor of Geology, examining a newly excavated Roman road at Aqueduct Park, Rome, Italy.

Dr. Glenn Warner, Professor of Water Resources Engineering, inspecting the modern city of Rome’s water source at Peschiera Spring.

For more information visit: Studyabroad.uconn.edu
Apply or Contact us at: studyabroad@uconn.edu
(860) 486-5022
Water Systems of Rome: Ancient to Modern

What does the course entail?
This is a field course. It will entail excursions in Rome and vicinity to museums, surface water bodies, local springs, ancient wells, geological field trips within the city, exploration of aqueduct ruins aboveground and aqueduct channels underground, and ancient baths. We will also explore ancient water systems in Ostia Antica, Tivoli and Pompeii.

We will also visit elements of the modern water system including fountains and one of the major spring sources of water.

Each day will consist of a field trip, lectures by faculty and other experts while onsite, followed by students conducting water related field exercises including making observations, measurements, mapping, calculations and assessments to reinforce learning objectives.

Why Rome?
The development of modern municipal water systems, going from private sources that provided water to a few to large scale public sources that gather water from huge watersheds to satisfy the thirst of millions, perhaps best exemplifies the major concepts of environmental history. That is, the study of human interaction with the natural world over time.

The science, engineering, and architecture of most modern municipal water systems are founded on principles developed in ancient Rome. Although we often think of resource protection, management, and sustainability as modern concepts, they also have their origins in ancient Rome. Nowhere but in Rome can you view some 2000 years of municipal water resource development history.

Exploring the Marcia aqueduct (140 BC) channel in the mountains at Vicovaro in the Roman Campagna.

Tentative Schedule

May 9, Fly to Rome
May 10, Roman Forum
May 11, Geography field trip
May 12, Hydrogeological field trip
May 13, Aqueduct Park
May 14, Underground in Claudia and Marcia aqueducts
May 15, Porta Maggiore aqueducts
May 16, FREE DAY
May 17, Baths of Caracalla and Basilica of St. Mary of the Angels and the Martyrs
May 18, Piazza Navona and Largo di Torre Argentina
May 19, Aqua Vergine underground and Trevi Fountain
May 20, Pompeii and Vesuvius
May 21, Hadrian’s Villa, Tivoli
May 22, FREE DAY
May 23, City springs at Peschiera
May 24, Tiber River to Ostia Antica
May 25, Fly home

Excursions may change depending on logistics and weather

3 Credits
Cost: To be Determined
Includes roundtrip airfare, tuition, housing and excursions